• +

¡°½ðÈڿƼ¼Óë½ðÈÚ¹¤³Ì¡±Ñ§Êõ±¨¸æÔ¤¸æ

·¢²¼Ê±¼ä£º
2022-10-25
·¢²¼ÈË£º
ÕÅ»Ô
ä¯ÀÀÁ¿:
1320

±¨¸æÌâÄ¿£º¸Ü¸ËÊÇÒ»°ÑË«Èн£

±¨ ¸æ ÈË£ºÑîѧࣨÄϾ©´óѧ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦¡¢½ðÈÚ¹¤³ÌÑо¿ÖÐÐĸ±Ö÷ÈΣ©

±¨¸æÊ±¼ä£º2022Äê10ÔÂ29ÈÕÍí7:00-7:30

»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304

 

 

±¨¸æÌâÄ¿£ºÐÞÃ÷Çþ¡¢¶Â°µµÀ£ºÍÁµØ³öÈýð»®×ªË°Îñ²¿ÃÅÕ÷ÊÕÈçºÎÓ°Ïì³ÇͶծÐÅÓ÷çÏÕ£¿

±¨ ¸æ ÈË£ºÀî·ïÓ𣨶«±±²Æ¾­´óѧ½ðÈÚѧ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦¡¢½ðÈڿƼ¼Ñ§Ôº¸±Ôº³¤£©

±¨¸æÊ±¼ä£º2022Äê10ÔÂ29ÈÕÍí7:30-8:00

»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304

 

 

±¨¸æÌâÄ¿£ºOil Shocks and Stock Market Volatility: A Comprehensive Perspective

±¨ ¸æ ÈË£ºÂí·æ£¨Î÷ÄϽ»Í¨´óѧ¾­¼Ã¹ÜÀíѧԺ¸±½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£©

±¨¸æÊ±¼ä£º2022Äê10ÔÂ29ÈÕÍí8:00-8:30

»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304

 

 

±¨¸æÌâÄ¿£ºDiscrete-time Variance-optimal Deep Hedging in Affine GARCH Models

±¨ ¸æ ÈË£ºÁõÑå³õ£¨ÖÐɽ´óѧÁëÄÏѧԺ¸±½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦¡¢ÁëÄÏѧԺ¸±Ôº³¤£©

±¨¸æÊ±¼ä£º2022Äê10ÔÂ29ÈÕÍí8:30-9:00

»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304

 

 

±¨¸æÌâÄ¿£ºOptimal Life Cycle Decisions with Time-Inconsistent Preferences

±¨ ¸æ ÈË£º³ÂÊ÷Ãô£¨¹ã¶«¹¤Òµ´óѧ¹ÜÀíѧԺ¸±½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£©

±¨¸æÊ±¼ä£º2022Äê10ÔÂ29ÈÕÍí9:00-9:30

»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304

 

 

 

±¨¸æÈ˼ò½é

 

Ñîѧ࣬ÄϾ©´óѧ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦¡¢½ðÈÚ¹¤³ÌÑо¿ÖÐÐĸ±Ö÷ÈΡ£ÄÏ¿ª´óѧÀíѧ²©Ê¿£¬ÃÀ¹úÒÁÀûŵÒÁ´óѧÁªºÏÅàÑø²©Ê¿£¬Ïã¸Û³ÇÊдóѧ¾­¼ÃÓë½ðÈÚϵ²©Ê¿ºó¡£Ö÷ÒªÑо¿ÐËȤΪ½ðÈÚÑÜÉúÆ·Êг¡£¬Í¶×ÊÕßÐÐΪÓë½ðÈÚ´´Ð£¬ÐÅÓ÷çÏÕ¹ÜÀíµÈ¡£Ñо¿³É¹û·¢±íÓÚJournal of Financial EconomicsºÍReview of Financial StudiesµÈÆÚ¿¯¡£Ö÷³Ö¹ú¼Ò¼¶¿ÆÑÐÏîÄ¿4Ïî¡£

±¨¸æÕªÒª£ºÑÜÉúÆ·ÌṩµÄÒþÐԸܸËΪͶ×ÊÕßÌṩÁË·Å´óÀûÈóµÄ»ú»á£¬È»¶øÒàÓкܶàͶ×ÊÕßÒòÑÜÉúÆ·Òý·¢µÄËðʧ¶øÏÝÈë²ÆÎñÀ§¾³¡£ÕâÏîÑо¿ÀûÓÃÆÚ»õÊг¡ÕË»§¼¶Êý¾ÝÌÖÂÛÁ˸ܸ˶ÔͶ×ʼ¨Ð§µÄÓ°Ïì¡£Ñо¿·¢ÏÖ£¬¸ß¸Ü¸ËÔö¼ÓÁËͶ×Ê×éºÏµÄ·çÏÕ£¬Í¬Ê±½µµÍÁËͶ×ÊÊÕÒæ¡£ÀûÓüà¹Ü±ä»¯½øÐеÄË«ÖØ²î·Ö·ÖÎö֤ʵÁËÕâÒ»¶¨ÐÔ½áÂÛ¡£¸ß¸Ü¸Ë´øÀ´µÄËðʧԴÓÚÇ¿ÖÆÆ½²ÖÒÔ¼°ÓÉÓڸܸËÔö¼Ó¶ø²úÉúµÄ¶îÍâ½»Ò׳ɱ¾¡£¸ß¸Ü¸Ë·Å´óÁËȱ·¦¾­ÑéµÄͶ×ÊÕßÒò´¦ÖÃЧӦºÍ¶Ä²©Æ«ºÃ¶øÔì³ÉµÄËðʧ¡£ÁíÒ»·½Ã棬ÉÙÊýÓо­ÑéµÄͶ×ÊÕßͨ¹ý»ý¼«ÔñʱºÍ½øÐÐÌ×Àû½»Ò×À´ÀûÓøܸˣ»ÕâЩ½»Ò×ԱÿÔö¼ÓÒ»µ¥Î»¸Ü¸Ë£¬Æ½¾ùÿÌì¿É׬ȡ8¸ö»ùµã£¨Ä껯20%£©µÄ¶îÍâ»Ø±¨¡£

 

 

Àî·ïÓð£¬ÄУ¬1980Äê³öÉú£¬ÁÉÄþ¸§Ë³ÈË£¬¾­¼Ãѧ²©Ê¿¡¢½ðÈÚѧ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£¬¶«±±²Æ¾­´óѧ½ðÈڿƼ¼Ñ§Ôº¸±Ôº³¤£¬ÃÀ¹ú¿ÏËþ»ù´óѧ¹ú¼ÒÁôѧ»ù½ð¹«ÅÉ·ÃÎÊѧÕߣ¨2017.9-2018.9£©£¬ÁÉÄþÊ¡¡°ÐËÁÉÓ¢²Å¡±ÇàÄê°Î¼âÈ˲Å¡¢¶«±±²Æ¾­´óѧ½Ü³öѧÕß¡£Ö÷ÒªÑо¿·½Ïò£º¹«Ë¾½ðÈÚ¡¢¹«Ë¾ÖÎÀí¡¢½ðÈڿƼ¼¡£ÔÚ¡¶¾­¼ÃÑо¿¡·¡¢¡¶ÊÀ½ç¾­¼Ã¡·¡¢¡¶¹ÜÀí¿ÆÑ§Ñ§±¨¡·¡¢¡¶½ðÈÚÑо¿¡·¡¢¡¶²ÆÃ³¾­¼Ã¡·¡¢Pacific-Basin Finance Journal (SSCI)µÈ¹úÄÚÍâ¸ßˮƽѧÊõÆÚ¿¯·¢±í¶àƪѧÊõÂÛÎÄ£¬ÆäÖÐ2ƪÂÛÎı»ÈË´ó¸´Ó¡×ÊÁÏÈ«ÎÄ×ªÔØ¡£ÔÚ¿ÆÑ§³ö°æÉç³ö°æ¶ÀÁ¢ÊðÃûѧÊõ׍ָ2²¿¡£×÷Ϊ¸ºÔðÈËÖ÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨2Ï¡¢½ÌÓý²¿ÈËÎÄÉç¿Æ»ù½ðÏîÄ¿£¨2Ï¡¢ÁÉÄþÊ¡¡°ÐËÁÉÓ¢²Å¡±ÏîÄ¿£¨1Ï¡¢ÁÉÄþÊ¡½ÌÓýÌüÏîÄ¿£¨3Ï¡¢ÁÉÄþÊ¡Éç¿Æ¹æ»®»ù½ðÏîÄ¿£¨2Ï¡£»ñµÃÁÉÄþÊ¡×ÔÈ»¿ÆÑ§Ñ§Êõ³É¹û½±Ò»µÈ½±2Ïî¡¢¶þµÈ½±1Ï´óÁ¬ÊÐ×ÔÈ»¿ÆÑ§ÓÅÐãѧÊõÂÛÎĽ±¶þµÈ½±1ÏÖйú½ðÈÚϵͳ¹¤³ÌÓë·çÏÕ¹ÜÀíÄê»áÓÅÐãÂÛÎĽ±2ÏµÚÁù½ìÖйú½ðÈÚ¹ÜÀíÄê»á×î¼ÑÂÛÎĽ±1ÏµÚÒ»½ìÏãÕÁ½ðÈÚÂÛ̳ÓÅÐãÂÛÎĽ±1Ïî¡£¼æÈÎÖйú¹ÜÀíÏÖ´ú»¯Ñо¿»á¹ÜÀíÓë¾ö²ß¿ÆÑ§×¨Î¯»áÀíÊ¡¢Öйúϵͳ¹¤³Ìѧ»á½ðÈÚϵͳ¹¤³Ìרί»áÀíÊ£¬¡¶ÊÀ½ç¾­¼Ã¡·¡¢¡¶¹ÜÀí¿ÆÑ§Ñ§±¨¡·¡¢¡¶½ðÈÚÑо¿¡·¡¢¡¶²ÆÃ³¾­¼Ã¡·¡¢¡¶»á¼ÆÑо¿¡·¡¢¡¶Pacific-Basin Finance Journal¡·µÈѧÊõÆÚ¿¯Éó¸åÈË¡£

±¨¸æÕªÒª£º³¤ÆÚÒÔÀ´£¬ÖйúµØ·½Õþ¸®ÆÕ±é²ÉÓá°ÒÔµØÈÚ×Ê¡±Ä£Ê½Îª³ÇͶƽ̨ÌṩÐÅÓÃÖ§³Ö£¬²»½öÖú³¤Á˵ط½Õþ¸®ÈÚ×ʳ嶯£¬Ò²´øÀ´¾Þ´óµÄµØ·½Õþ¸®ÒþÐÔÕ®Îñ·çÏÕ¡£×Ô2014ÄêÆð£¬ÖÐÑëÕþ¸®Ã÷È·½«¡°ÐÞÃ÷Çþ¡¢¶Â°µµÀ¡±×÷Ϊ»ù±¾Ô­Ôò£¬×ÅÁ¦»¯½âµØ·½Õþ¸®ÒþÐÔÕ®Îñ·çÏÕ¡£ÍÁµØ³öÈÃÊÕÈë×÷Ϊ¡°ÒÔµØÈÚ×Ê¡±Ä£Ê½µÄÖØÒªÔØÌ壬³ÉΪ»¯½âµØ·½Õþ¸®ÒþÐÔÕ®Îñ·çÏյĹؼüËùÔÚ¡£±¾Îľ۽¹2021Äê7ÔÂʵʩµÄÍÁµØ³öÈýð»®×ªË°Îñ²¿ÃÅÕ÷ÊÕÊÔµãÕþ²ß£¬Ñо¿ÖÐÑëÕþ¸®¶ÔÍÁµØ³öÈÃÊÕÈëʵʩ¡°ÐÞÃ÷Çþ¡¢¶Â°µµÀ¡±ÈçºÎÓ°Ïì³ÇͶծÐÅÓ÷çÏÕ¡£Ñо¿·¢ÏÖ£¬ÍÁµØ³öÈýð»®×ªË°Îñ²¿ÃÅÕ÷ÊÕÏÔÖø½µµÍÁËÊÔµãµØÇø³ÇͶծµÄÐÅÓÃÀû²î£¬ÕâÒ»ÏÖÏóÔÚÒÔÍÁµØ¿ª·¢ÎªÖ÷ÓªÒµÎñ¡¢ÐÅÓÃÆÀ¼¶½ÏµÍ¡¢Ó¯ÀûÄÜÁ¦½Ï²î¡¢ÍÁµØ×ʲú×¢Èë¹æÄ£½ÏÉÙ¡¢µØÇø²ÆÕþȱ¿Ú½ÏСµÄ³ÇͶƽ̨ÖбíÏÖ¸ü¼ÓÃ÷ÏÔ¡£¾­¼Ã»úÖÆ·ÖÎöÏÔʾ£¬ÍÁµØ³öÈýð»®×ªË°Îñ²¿ÃÅÕ÷ÊÕÖ÷Ҫͨ¹ýÇ¿»¯µØ·½Õþ¸®ÒþÐÔµ£±£ºÍ¸ÄÉÆ²ÆÕþÐÅϢ͸Ã÷¶ÈµÄÇþµÀ¶Ô³ÇͶծÐÅÓ÷çÏÕ²úÉúÓ°Ïì¡£±¾ÎÄÑо¿½áÂÛ±íÃ÷£¬ÍÁµØ³öÈÃÊÕÈëÊǵط½Õþ¸®ÒþÐÔÕ®Îñ·çÏÕµÄÖØÒª¾ö¶¨ÒòËØ£¬ÖÐÑëÕþ¸®¶ÔÍÁµØ³öÈÃÊÕÈëʵʩ¡°ÐÞÃ÷Çþ¡¢¶Â°µµÀ¡±¶ÌÆÚÄÚÓÐÖúÓÚ½µµÍ³ÇͶծÐÅÓ÷çÏÕ£¬µ«ÊÇ´Ó³¤ÆÚÀ´¿´È´Ç¿»¯Á˵ط½Õþ¸®µÄÒþÐÔµ£±££¬¿ÉÄÜ»á½øÒ»²½Öú³¤µØ·½Õþ¸®µÄÈÚ×ʳ嶯¡£

 

 

Âí·æ£¬Î÷ÄϽ»Í¨´óѧ¾­¼Ã¹ÜÀíѧԺ¸±½ÌÊÚ£¬²©µ¼¡£ÏÖΪ½ðÈÚÔ¤²âÍŶӸºÔðÈË£¬Finance Research Letter¸±Ö÷±à£¨FINANCE, 6/110, Q1£©£¬China Finance Review InternationalÆÚ¿¯ÇàÄê±àί¡£2021-2022Á¬ÐøÁ½ÄêÈëÑ¡¡°°®Ë¼Î¨¶û¡±Öйú¸ß±»ÒýѧÕß¡£2019ÄêÈëÑ¡¡°ËÄ´¨Ê¡È˲żƻ®¡±£¬2021ÈëÑ¡µÚÊ®ÈýÅúËÄ´¨Ê¡Ñ§ÊõºÍ¼¼Êõ´øÍ·È˺ó±¸ÈËÑ¡¡£ÏÖÖ÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏ¡¢ÇàÄê¼°½ÌÓý²¿ÈËÎÄÉç¿ÆÏîÄ¿¸÷Ò»Ï²ÎÓë¹ú¼Ò¼¶¿ÎÌâ¶àÏî¡£Ö÷ÒªÑо¿·½ÏòΪ½ðÈÚ¼ÆÁ¿¡¢Ô¤²â¼°·çÏÕ¹ÜÀí£¬ÔÚ½ðÈÚÊг¡²¨¶¯ÓëÊÕÒæÂʽ¨Ä£Ô¤²âµÈÁìÓòÈ¡µÃÁËϵÁгɹû¡£·¢±íѧÊõÂÛÎİÙÓàÆª£¬Ö÷ÒªÑо¿³É¹û·¢±íÔÚJournal of Banking & Finance¡¢Journal of Empirical Finance¡¢International Journal of Forecasting¡¢European Journal of Finance¡¢Journal of Futures Markets¡¢Journal of International Financial Markets£¬Institutions & Money¡¢Annals of Operations Research¡¢¡¶¹ÜÀí¿ÆÑ§Ñ§±¨¡·¡¢¡¶ÏµÍ³¹¤³ÌÀíÂÛÓëʵ¼ù¡·µÈ¹úÄÚÍâ¸ßˮƽÆÚ¿¯¡£Ä¿Ç°ÓÐ6ƪÂÛÎÄÈëÑ¡ECONOMICS & BUSINESS£¨¾­¼ÃÓëÉÌѧ£©ESI¸ß±»ÒýÂÛÎÄ¡£

±¨¸æÕªÒª£ºThis paper investigates the predictability of oil shocks for stock market volatility from a comprehensive perspective. Our empirical analysis shows that multiple oil shock measures contain valuable information for predicting stock market volatility, in addition to traditional economic variables and uncertainty indices. Moreover, the least absolute shrinkage and selection operator (LASSO) method and regime-switching model jointly deliver incremental improvement in forecasting accuracy from both statistical and economic perspectives. These results are confirmed by robustness checks under different business cycles and market conditions, including the COVID-19 pandemic.

 

 

ÁõÑå³õ£¬²©Ê¿ÏÖ¾ÍÖ°ÓÚÖÐɽ´óѧÁëÄÏѧԺ£¬µ£Èθ±Ôº³¤£¬½ðÈÚѧ¸±½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦¡£Ïã¸ÛÖÐÎÄ´óѧ½ðÈÚ¹¤³Ìѧ²©Ê¿¡¢²©Ê¿ºó£¬Öйú¿ÆÑ§¼¼Êõ´óѧÀíѧ˶ʿÓëÀíѧѧʿ¡£Ö÷ÒªÑо¿ÐËȤΪ½ðÈÚ¹¤³Ì£¬½ðÈڿƼ¼£¬ÒÔ¼°Ïà¹ØÓ¦Óá£ÔÚ¡¶¹ÜÀí¿ÆÑ§Ñ§±¨¡·£¬¡¶Operations Research¡·£¬¡¶INFORMS Journal on Computing¡·£¬¡¶Journal of Economic Dynamics and Control¡·£¬¡¶European Journal of Operational Research¡·£¬¡¶Quantitative Finance¡·£¬¡¶Journal of Futures Markets¡·£¬¡¶Insurance: Mathematics and Economics¡·£¬¡¶IEEE Transactions on Engineering Management¡·£¬¡¶European Journal of Finance¡·£¬¡¶Annals of Operations Research¡·£¬¡¶Finance Research Letters¡·µÈ¹úÄÚÍâÖ÷Á÷ѧÊõÆÚ¿¯ÉÏ·¢±í£¨º¬½ÓÊÕ£©ÂÛÎĽü40ƪ¡£Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉϺÍÇàÄêÏîÄ¿¡¢¹ãÖÝÆÚ»õ½»Ò×ËùÊ×Åú¶ÔÍâºÏ×÷¿ÎÌâ¡¢ÖйúÆÚ»õҵЭ»áÑо¿¿ÎÌâµÈ¿ÆÑÐÏîÄ¿¡£

±¨¸æÕªÒª£ºVariance-optimal hedging in a discrete-time framework is a practical option-hedging strategy that aims to reduce the residual risk. It has been widely used in volatility trading desks. In this paper, we solve the variance-optimal hedging problem for affine GARCH models both semi-explicitly and through deep learning. Applying the Laplace transform method, we derive semi-explicit formulas for the variance-optimal hedging strategy and initial endowment. We also apply the Long Short-Term Memory (LSTM) recurrent neural network (RNN) architectures and solve for optimal hedging strategies under mean square error loss function with transaction costs. Numerical examples illustrate the hedging performance for different approaches, option styles, hedging frequencies and transaction costs. [This is a joint work with Hongkai Cao, Zhenyu Cui and Ying Yu.]

 

 

³ÂÊ÷Ãô£¬¹ã¶«¹¤Òµ´óѧ¹ÜÀíѧԺ¸±½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦¡£Ö÷Òª´ÓʽðÈÚ¹¤³Ì¡¢±£ÏÕ¾«ËãµÈÁìÓòµÄÑо¿£¬Ä¿Ç°ÒÑÔÚ Siam Journal on Financial Mathematics¡¢Journal of Economic Dynamics and Control¡¢Insurance: Mathematics and Economics¡¢ASTIN Bulletin¡¢Scandinavian Actuarial Journal¡¢¹ÜÀí¿ÆÑ§Ñ§±¨µÈÆÚ¿¯ÉÏ·¢±íÂÛÎĶþÊ®ÓàÆª£¬Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄê/ÃæÉÏÏîÄ¿¡¢Öйú²©Ê¿ºó»ù½ðÃæÉÏ/ÌØ±ð×ÊÖúÏîÄ¿¡¢¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðµÈ7ÏîÊ¡²¿¼¶ÒÔÉÏ»ù½ðÏîÄ¿¡£

±¨¸æÕªÒª£ºWe examine the lifetime decisions on investment, consumption, and life insurance purchasing for an investor with time-inconsistent preferences. We obtain optimal time-consistent strategies explicitly under the stationary Markov perfect equilibrium framework. We find that the investor increases consumption immediately to seek quick gratification, and foreseeing reduced wealth growth, simultaneously increases life insurance purchasing to fulfill her legacy need. Moreover, at the later stage of the life cycle, wealth accumulation effects dominate and she suffers lower consumption and life insurance purchasing. We also study the effects of naivete, risk aversion, legacy weight, insurance costs, death duty, labor income, and return predictability.