±¨¸æÌâÄ¿£º»ùÓÚ»úÆ÷ѧϰ·½·¨µÄÖйú¹«Ä¼»ù½ðÊÕÒæÔ¤²â
±¨ ¸æ ÈË£ºÀîÖÙ·É£¨ÄÏ·½¿Æ¼¼´óѧ½²Ï¯½ÌÊÚ£¬³¤½Ñ§ÕßÌØÆ¸½ÌÊÚ£¬¹ú¼Ò½ÜÇࣩ
±¨¸æÊ±¼ä£º2022Äê11ÔÂ9ÈÕÍí7:00-7:30
»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304
±¨¸æÌâÄ¿£ºÊг¡²Ù×ÝÄܱ»»úÆ÷ѧϰÂ𣿡ª»ùÓÚ¸ßÆµÊý¾ÝÓë¡°Òþ²Ø¡±°¸ÀýÐÅÏ¢ÍÚ¾òµÄÊÓ½Ç
±¨ ¸æ ÈË£º³Âº£Ç¿£¨ÏÃÃÅ´óѧ½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦£¬ÏÃÃÅ´óѧÍõÑÇÄϾ¼ÃÑо¿Ôº¸±Ôº³¤£©
±¨¸æÊ±¼ä£º2022Äê11ÔÂ9ÈÕÍí7:30-8:00
»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304
±¨¸æÌâÄ¿£ºRealized Probability: A Conditional Autoregressive Beta Mode for Return Direction Forecasting
±¨ ¸æ ÈË£ºÐ»º£±õ£¨¶ÔÍâ¾¼ÃóÒ×´óѧ½ðÈÚѧԺ½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦£¬½ðÈڿƼ¼ÏµÖ÷ÈΣ©
±¨¸æÊ±¼ä£º2022Äê11ÔÂ9ÈÕÍí8:00-8:30
»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304
±¨¸æÌâÄ¿£ºForecasting High-Dimensional Value at Risk with Dynamic Factor Loadings Based on the Multivariate Asymmetric Laplace Distribution
±¨ ¸æ ÈË£º³ÂТࣨÄÏ¿ª´óѧ½ðÈÚѧԺ½ÌÊÚ£©
±¨¸æÊ±¼ä£º2022Äê11ÔÂ9ÈÕÍí8:30-9:00
»áÒ鷽ʽ£ºÌÚѶ»áÒé ID£º157-212-304
±¨¸æÈ˼ò½é
ÀîÖÙ·É£¬ÄУ¬ÄÏ·½¿Æ¼¼´óѧ½ðÈÚϵ½²Ï¯½ÌÊÚ£¬¹úÎñԺѧλίԱ»áѧ¿ÆÆÀÒé×é³ÉÔ±£¬³¤½Ñ§ÕßÌØÆ¸½ÌÊÚ£¬¹ú¼Ò½ÜÇ࣬ȫ¹úÄ£·¶½Ìʦ£¬¹úÎñÔºÕþ¸®ÌØÊâ½òÌùר¼Ò£¬È«¹ú°ÙƪÓÅÐ㲩ʿѧλÂÛÎÄ»ñµÃÕߣ¬ÐÂÖйú³ÉÁ¢70ÖÜÄê¹ÛÀñ¼Î±ö£¬Elsevier Öйú¸ß±»ÒýѧÕߣ¬È«Çòǰ2%¶¥¼â¿ÆÑ§¼Ò£¬¹ú¼Ò×Ô¿Æ´´ÐÂÑо¿ÈºÌåÏîÄ¿Ö÷³ÖÈË£¬¹ú¼ÒÉç¿Æ»ù½ðѧ¿ÆÆÀÉó×éר¼Ò£¬Öйúϵͳ¹¤³Ìѧ»á¸±Àíʳ¤£¬ÖйúÓÅÑ¡·¨Í³³ï·¨Óë¾¼ÃÊýѧÑо¿»á¸±Àíʳ¤¼°ÆäÁ¿»¯½ðÈÚÓë±£ÏÕ·Ö»áÀíʳ¤£¬Ê®¶à¸ö¹úÄÚÍâÆÚ¿¯µÄÁìÓòÖ÷±à¡¢¸±Ö÷±à»ò±àί¡£ÀúÈÎÖÐɽ´óѧÉç¿Æ´¦´¦³¤£¬¹ÜÀíѧԺִÐÐÔº³¤£¬´´ÒµÑ§ÔºÔº³¤¡£Ñо¿ÁìÓò°üÀ¨ÂÌÉ«½ðÈÚÓë̼¾¼Ã£¬½ðÈڿƼ¼ÓëÊý×Ö½ðÈÚ£¬½ðÈÚ¹¤³ÌÓë·çÏÕ¹ÜÀí£¬½ðÈÚÊг¡ÓëͶ×Ê¡£
±¨¸æÕªÒª£º±¾Ñо¿×ۺϻù½ð×ÔÉíÌØÕ÷¡¢»ù½ð³ÖÓÐ¹ÉÆ±ÌØÕ÷¡¢»ù½ð¾ÀíÌØÕ÷ºÍºê¹Û±äÁ¿ËÄ´óÀà104¸öÌØÕ÷Ö¸±ê£¬ÔËÓÃ8ÖÖ»úÆ÷ѧϰ·½·¨£¬Ì½Ë÷Öйú¹«Ä¹»ù½ðÊÕÒæÊÇ·ñ¿ÉÒÔ±»Ô¤²â£¬ÄÄÐ©ÌØÕ÷¿ÉÒÔÔ¤²â»ù½ðÊÕÒæ£¬ÒÔ¼°Ò»Ð©ÌØÕ÷ºÍ»ù½ðÊÕÒæµÄ·ÇÏßÐÔ¹ØÏµ¡£½á¹û±íÃ÷£¬ÎÒÃǵIJ¿·ÖÄ£ÐÍÔÚ²»Í¬µÄÊг¡Çé¿ö϶¼¾ßÓзdz£ºÃµÄÔ¤²âÄÜÁ¦£¬ÄÜ»ñµÃ¸ß´ï66%µÄÑù±¾ÍâR2£»ÄÜÓÐЧʶ±ðÓÅÐãµÄ»ù½ð£»ÄÜ»ñµÃ·Ç³£¸ßµÄͶ×Ê×éºÏÊÕÒæ£¬Î´À´Ê׸ö¼¾¶ÈµÄ×î¸ßʵ¼ÊÊÕÒæ¿É´ï40%£¬¸ßˮƽҵ¼¨¿É³ÖÐø6¸ö¼¾¶È¡£´ËÍ⣬ÎÒÃǵÄÑо¿·¢ÏÖÁ˾ßÓÐ×îºÃÔ¤²âÄÜÁ¦µÄÌØÕ÷Ö¸±ê¡£±¾Ñо¿¶ÔÖйú¹«Ä¼»ù½ðͶ×ÊÕߺͽðÈÚ·ÖÎöʦÓÐÖØÒªµÄ²Î¿¼¼ÛÖµ¡£
³Âº£Ç¿£¬½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦£¬ÃÀ¹ú¿µÄζû´óѧ¾¼Ãѧ²©Ê¿£¬ÏÃÃÅ´óѧÍõÑÇÄϾ¼ÃÑо¿Ôº¸±Ôº³¤£¬½ÌÓý²¿¼ÆÁ¿¾¼ÃÑ§ÖØµãʵÑéÊÒ£¨ÏÃÃÅ´óѧ£©¸±Ö÷ÈΣ¬ÈëÑ¡½ÌÓý²¿ÇàÄê¹ú¼Ò¼¶È˲ţ¨2020£©£¬¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÖØµãÏîÄ¿Ö÷³ÖÈË£¬¸£½¨Ê¡¸ßµÈѧУÐÂÊÀ¼ÍÓÅÐãÈ˲ţ¬ÏÃÃÅÊи߲ã´ÎÒý½øÈ˲š£Ñо¿ÁìÓòΪ½ðÈÚ¼ÆÁ¿¡¢Êý×Ö¾¼Ã¡¢½ðÈڿƼ¼Óë½ðÈÚ·çÏÕ¹ÜÀí¡£ÂÛÎÄ·¢±íÔÚAEA Papers and Proceedings, Journal of Econometrics, Econometric Theory, Econometrics Journal, Journal of Empirical Finance, Journal of International Money and Finance,¡¶¾¼ÃÑо¿¡·ºÍ¡¶¹ÜÀí¿ÆÑ§Ñ§±¨¡·µÈ¹úÄÚÍâÖØÒªÑ§ÊõÆÚ¿¯¡£Ôø»ñ¹ú¼Ò¸ßµÈ½ÌÓý½Ìѧ³É¹û½±¶þµÈ½±£¨2018£©¡¢±¦¸ÖÓÅÐã½Ìʦ£¨2021£©¡¢China Economic ReviewÄê¶È×î¼ÑÂÛÎÄ£¨2017£©¡¢¸£½¨Ê¡µÚÊ®¶þ½ìÉç»á¿ÆÑ§ÓÅÐã³É¹û½±µÈ½±¡£ÔÚ¡¶¾¼ÃÈÕ±¨¡·¡¢¡¶ÖйúÉç»á¿ÆÑ§±¨¡·µÈ¹úÄÚÖØÒªÐÂÎÅýÌå׫ÎÄ£¬Ïà¹ØÕþ²ß±¨¸æ»ñ¹ú¼ÒÁìµ¼ÈËÅúʾ¡£×÷Ϊ¸ºÔðÈËÖ÷³Ö¶àÏî¹ú¼Ò¼¶¡¢Ê¡²¿¼¶ºÍÆóÒµ¿ÎÌâ¡£
±¨¸æÕªÒª£ºÊг¡²Ù×Ý·ºÀÄÊÇÀ§ÈÅA¹ÉÊг¡µÄ³¤ÆÚÎÊÌ⣬Ȼ¶ø£¬ÓÉÓÚȱ·¦ÊµÊ±ÓÐЧµÄÔ¤²âÔ¤¾¯Óë¼à¹Ü»úÖÆ£¬Í¶×ÊÕßÎÞ·¨¼°Ê±¹æ±ÜÏà¹Ø·çÏÕ¡£±¾ÎÄÀûÓÃ2013ÄêÖÁ2020ÄêÖйúÖ¤¼à»á¹«²¼µÄÊг¡²Ù×Ý´¦·£°¸ÀýËùÉæ¼°µÄ¹ÉƱ×÷ΪѧϰÑù±¾£¬½áºÏ¸ßƵ½»Ò×Êý¾ÝÓ빫˾ÖÎÀíÏà¹ØµÄµÍƵ±äÁ¿¹¹½¨ÌØÕ÷¼¯£¬²ÉÓûúÆ÷ѧϰ·½·¨ÖðÄêѧϰѵÁ·µÃµ½A¹ÉÊг¡²Ù×Ý»úÆ÷ѧϰģÐÍ¡£Ó봫ͳ¼ÆÁ¿Ä£ÐÍÏà±È£¬ÐÂÌá³öµÄ»úÆ÷ѧϰ·½·¨¸ÄÉÆÁ˰¸Àý¹«²¼Öͺóµ¼ÖµÄÑù±¾»ìÏýÎÊÌ⣬²¢ÄÜ´¦Àí¸ßά±äÁ¿ÒÔ¼°²¶×½±äÁ¿Ö®¼ä´æÔڵķÇÏßÐÔ¹ØÏµ¡£Ñù±¾ÍâÔ¤²â֤ʵ»úÆ÷ѧϰ½Ï´«Í³¼ÆÁ¿Ä£ÐÍÄܸü¼°Ê±ÓÐЧʶ±ð¼°Ô¤¾¯²Ù×ÝÐÐΪ¡£½øÒ»²½£¬±¾ÎÄ»ùÓÚ»úÆ÷ѧϰģÐ͹À¼ÆµÃµ½¸ö¹ÉÈÕ¶ÈÊг¡²Ù×Ý·çÏÕÖ¸±ê£¨MM-score£©£¬Ä£Äâ¹¹½¨¼à¹ÜÖØµãÃûµ¥£¬·¢ÏÖ»úÆ÷ѧϰ½Ï´«Í³¼ÆÁ¿½¨Ä£¿ÉÒÔÏÔÖøÌá¸ß±»²Ù×Ý¹ÉÆ±µÄ¸²¸ÇЧÂÊ£¬´ËÍâ»ùÓÚMM-score¹¹½¨µÄ¼òµ¥¶à¿Õ²ßÂÔÒàÄܲúÉúÏÔÖø²¢ÎȽ¡µÄ³¬¶îÊÕÒæ£¬ÇÒÊÜÒæÀ´Ô´Ö÷ÒªÀ´×Ը߲Ù×Ý·çÏÕ×éµÄÂô¿ÕÊÕÒæ¡£±¾ÎĽáÂÛÈÏΪ£¬´óÊý¾ÝÓë»úÆ÷ѧϰ·½·¨Ïà½áºÏµÄ¼à¹Ü¿Æ¼¼ÄÜÓÐЧÌá¸ßÊг¡²Ù×ÝÔ¤²âÓë¼à¹ÜЧÂÊ£¬¿ÉÒÔΪͶ×ÊÕß¾ö²ßÌṩԤ¾¯Ö¸±ê¡£
лº£±õ£¬ÏÖÈζÔÍâ¾¼ÃóÒ×´óѧ½ðÈÚѧԺ½ÌÊÚ£¬½ðÈڿƼ¼ÏµÏµÖ÷ÈΣ¬²©Ê¿Éúµ¼Ê¦£¬Ö÷ÒªÑо¿·½ÏòΪʵ֤½ðÈÚ£¬·çÏÕ¹ÜÀí£¬Ô¤²âÀíÂÛÓë·½·¨µÈ£¬Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð¡¢½ÌÓý²¿ÈËÎÄÉç¿Æ»ù½ð¡¢¶ÔÍâ¾¼ÃóÒ×´óѧÓÅÐãÇàÄêÅàÓý¼Æ»®ÏîÄ¿µÈ¶àÏî¹ú¼Ò¼¶ºÍÊ¡²¿¼¶¿ÎÌâÑо¿ÏîÄ¿£¬ÔÚ¡¶¹ÜÀí¿ÆÑ§Ñ§±¨¡·¡¢¡¶¹ÜÀíÆÀÂÛ¡·¡¢¡¶Öйú¹ÜÀí¿ÆÑ§¡·¡¢¡¶Í³¼ÆÑо¿¡·¡¢Journal of Forecasting¡¢Journal of Risk¡¢Computational Economics¡¢Journal of DerivativesµÈ¹úÄÚÍâȨÍþÆÚ¿¯·¢±í¶àƪÂÛÎÄ¡¢³ö°æÖÐÓ¢ÎÄѧÊõ׍ָ¸÷Ò»²¿¡£Ôø»ñÈ«¹úÉÌÎñ·¢Õ¹Ñо¿½±£¬½ðÈÚ½ÌÓýÓÅÐãÑо¿³É¹ûÖø×÷ÀàÈýµÈ½±¡¢Ð£¼¶ÓÅÐãÂÛÎÄÖ¸µ¼½ÌʦµÈÈÙÓþ¡£
±¨¸æÕªÒª£ºReturn direction forecasting is of great importance to practitioners and of great interest in financial econometrics. With the easy access to high-frequency data, this paper presents a new decomposition technique that can transform return direction prediction into realized probability forecasting, and proposes a Conditional AutoRegressive Beta-distribution (CARB) model. The CARB model shares a dynamic structure similar to ARCH-type models. An even more interesting and important property with the CARB model is that it can capture not only the time-varying probability of direction change but also the term structure of probability change. Simulation studies examine the performance of the CARB model in finite samples, and empirical results confirm that the CARB model yields better in-sample and out-of-sample direction forecasts than the commonly used dynamic probit model does.
³ÂТ࣬ÏÖΪÄÏ¿ª´óѧ½ðÈÚѧԺ¾«Ëãѧϵ½ÌÊÚ£¬ÃÀ¹úÒÁÀûŵÒÁ´óѧ¡¢º«¹úľÆÖº£Ñó´óѧ·ÃÎÊѧÕߣ¬Ñо¿·½ÏòΪ·çÏÕ¹ÜÀíÓ뾫Ëãѧ¡¢¶¯Ì¬¾¼ÃÀíÂÛ£¬·¢±íѧÊõÂÛÎÄ40ÓàÆª£¬·Ö²¼ÔÚInsurance: Mathematics and Economics, EJOR£¬Information Sciences£¬¡¶ÄÏ¿ª¾¼ÃÑо¿¡·Óë¡¶±£ÏÕÑо¿¡·µÈ¾¼Ã¡¢¹ÜÀí¿ÆÑ§ÁìÓòÖªÃûÆÚ¿¯£¬Ö÷³ÖÁ½Ïî¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð¡£2011ÄêÈëÑ¡Ìì½òÊÐÊ×Åú¡°ÓÃÈýÄêʱ¼äÒý½øÇ§ÃûÒÔÉϸ߲ã´ÎÈ˲š±ÏîÄ¿£¬2017ÄêÌì½òÊÐ131µÚÈý²ã´ÎÈ˲š£Ä¿Ç°µ£ÈÎÖйúÔ˳ïѧ»á²»È·¶¨ÏµÍ³·Ö»áÀíʳ¤£¬ÖйúÔ˳ïѧ»áÀíÊ£¬ÖйúÔ˳ïѧ»áÖÇÄܼÆËã·Ö»á³£ÎñÀíÊ£¬¡¶Fuzzy Optimization and Decision Making¡·¡¶Journal of Uncertain Systems¡·¸±Ö÷±à£¬¡¶International Journal of e-Navigation and Maritime Economy¡·±àί£¬½ÌÓý²¿Ñ§Î»ÖÐÐÄѧλÂÛÎÄÆÀÉóר¼Ò£¬Ìì½òÊÐÕþ¸®±£ÏÕÕÐͶ±êÆÀÉóר¼Ò¡£
±¨¸æÕªÒª£ºThis paper develops a new quantile regression framework to forecast Value at Risk (VaR) for high-dimensional stock returns. The proposed methodology is highly flexible and computationally tractable with score-driven dynamics. We draw on successful ideas from the research on modeling high-dimensional covariance matrixes and the recent work on generalizing the Multivariate Asymmetric Laplace (MAL) joint quantile regression to a time-varying setting. A closed-form likelihood expression is derived to allow for straightforward parameter estimation making the model scalable to high dimensions. Applying the new model to a large panel of 50 stocks from 11 Sectors of the S\&P 100 index from 2001 to 2021, we show that our model produces a relatively accurate forecast of out-of-sample VaR. Using the Skew Mean-Variance (SMV) strategy, we show that the new model also improves portfolio performance one step ahead.