11ÔÂ26ÈÕµ½27ÈÕ£¬ÎÒУÔÚÏßÉϾٰì2022ÄêÈ«¹úÊýÀíÂß¼Äê»á£¨CACML2022£©¡£±¾´Î»áÒéÓÉÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»áÖ÷°ì£¬ÎÒУÊýÀíÓë½ðÈÚѧԺ³Ð°ì¡£¼ÓÄôó»Ê¼Òѧ»áԺʿ¡¢¶àÂ×¶à´óѧStevo Todorcevic½ÌÊÚ£¬¼ÓÖÝ´óѧ²®¿ËÀû·ÖУAntonio Montalban½ÌÊÚ£¬Å£½ò´óѧÊýѧÑо¿ËùBoris Zilber½ÌÊÚ£¬²é¶û˹¶ÙѧԺ½ðÈË÷ë½ÌÊÚ£¬¿µÄζû´óѧSlawomir Solecki½ÌÊÚ£¬Ô¹ú¼Ê·ûºÅÂ߼лᶫÑÇ·Ö»áÀíʳ¤¡¢¹ú¼Ê·ûºÅÂ߼лáÀíÊ·ëçùÑо¿Ô±£¬ÔÉÂÎ÷ʦ·¶´óѧ¸±Ð£³¤ÕÔ±ò½ÌÊÚ£¬ÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»áÊ×ÈÎÖ÷ÈΡ¢ËÄ´¨´óѧÕÅÊ÷¹û½ÌÊÚ£¬ÄÏ¿ª´óѧ½²Ï¯½ÌÊÚ¸ßËÙ½ÌÊÚ£¬ÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»áÏÖÈÎÖ÷ÈΡ¢ÄÏ¿ª´óѧÊýѧ¿ÆÑ§Ñ§ÔºÔº³¤¶¡ÁúÔÆ½ÌÊÚ£¬ÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»á¸±Ö÷ÈΡ¢ÄϾ©´óѧÊýѧϵÖ÷ÈÎÓ÷Á¼½ÌÊÚ£¬¹ú¼Ê·ûºÅÂ߼лá·ÒëίԱ»áίԱ¡¢¸´µ©´óѧºÂÕ׿í½ÌÊÚ£¬ÖÐɽ´óѧÂß¼ÓëÈÏÖªÑо¿ËùÕÔϣ˳½ÌÊڵȹúÄÚÍâÖªÃûר¼ÒѧÕ߲μÓÁ˱¾´ÎÏßÉÏÄê»á¡£Ð£µ³Î¯³£Î¯¡¢¸±Ð£³¤·ÑÎªÒø£¬ÊýÀíÓë½ðÈÚѧԺµ³Î¯Êé¼ÇÖÜÒãÈÊ£¬Ôº³¤ÎâС̫£¬´ó»á×éί»á³ÉÔ±ºÍʦÉú´ú±í³öϯ¿ªÄ»Ê½¡£¿ªÄ»Ê½ÓÉѧԺԺ³¤ÎâС̫Ö÷³Ö¡£
¸±Ð£³¤·ÑÎªÒøÔÚ¿ªÄ»Ê½Ö´ÇÖнéÉÜÁËÎÒУºÍѧ¿ÆµÄ»ù±¾Çé¿ö£¬Ïò²Î»á¼Î±ö±íʾÁËÈÈÁÒ»¶ÓºÍÖÔÐĸÐл£¬²¢Ô¤×£Äê»áÈ¡µÃÔ²Âú³É¹¦¡£ÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»áÖ÷ÈΡ¢ÄÏ¿ª´óѧÊýѧ¿ÆÑ§Ñ§ÔºÔº³¤¶¡ÁúÔÆ½ÌÊÚ×÷»áÒéÖ´ǣ¬¶¡½ÌÊÚ¸ÐлÎÒУ³Ð°ì±¾´ÎÊýÀíÂß¼Äê»á£¬²¢½éÉÜÁËÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»áµÄ·¢Õ¹Çé¿öºÍ±¾´ÎÄê»áµÄ»ù±¾Çé¿ö¡£
±¾´ÎÄê»á´ó»á±¨¸æ¹²ÓÐ5³¡¡£ÃÀ¹ú²é¶û˹¶ÙѧԺ½ðÈË÷ë½ÌÊÚ×÷ÌâΪ¡¶Many Levels of Infinities and Multidimension van der Waerden¡¯s Theorem¡·µÄ´ó»á±¨¸æ£¬±¨¸æÈ˹¹½¨Á˷DZê×¼·ÖÎöеĿò¼Ü£¬²¢ÔÚ´Ë¿ò¼ÜÖиø³ö¶àά·¶µÂÍß¶ûµÇ¶¨ÀíµÄ¼òµ¥·Ç±ê×¼Ö¤Ã÷¡£¼ÓÖÝ´óѧ²®¿ËÀû·ÖУ¡¢2014Äê¹ú¼ÊÊýѧ¼Ò´ó»á45·ÖÖÓ·Ö×鱨¸æÈËAntonio Montalban½ÌÊÚ×÷ÌâΪ¡¶A Robuster Scott Rank¡·µÄ´ó»á±¨¸æ£¬ÒýÈëÁË Robuster Scott Rank£¬²¢ÒÔ´ËΪ¹¤¾ßÖ¤Ã÷¿ÉÊý½á¹¹µÄ¸÷ÖÖ²»Í¬µÄºâÁ¿¸´ÔÓÐԵķ½·¨ÊÇÏàÈݵġ£ÖйúÊýѧ»áÊýÀíÂ߼ίԱ»áÊ×ÈÎÖ÷ÈΡ¢ËÄ´¨´óѧÕÅÊ÷¹û½ÌÊÚ×÷ÌâΪ¡¶Ideals, Ultrafilters and Cardinal Invariants of the Continuum¡·µÄ´ó»á±¨¸æ£¬½éÉÜÁËÍŶÓ×î½ü¼¸ÄêÔÚÀíÏë¡¢³¬ÂË×ÓºÍÁ¬ÐøÍ³»ùÊý²»±äÁ¿·½ÃæµÄÑо¿³É¹û¡£¼ÓÄôó»Ê¼Òѧ»áԺʿ¡¢¼ÓÄôóÊýѧÊ×ϯ¿ÆÑ§¼Ò£¨Canada Research Chair£©¡¢·¨¹ú¹ú¼Ò¿ÆÑ§Ñо¿ÖÐÐÄÖ÷ÈΡ¢¶àÂ×¶à´óѧµÄStevo Todorcevic½ÌÊÚ×÷ÌâΪ¡¶A Dual Ramsey Theorem for Finite Trees¡·µÄ´ó»á±¨¸æ£¬½éÉÜÁËÓÐÏÞÊ÷µÄ¶Ôż Ramsey ¶¨Àí¡£Å£½ò´óѧÊýѧÑо¿ËùµÄBoris Zilber½ÌÊÚ×÷ÌâΪ¡¶Applied Model Theory beyond first order¡·µÄ´ó»á±¨¸æ£¬½éÉÜÁËÄ£ÐÍÂÛµÄнøÕ¹ÒÔ¼°ÔÚÊýÂۺʹúÊý¼¸ºÎÖеÄÓ¦Óá£
·Ö×鱨¸æ¹²4³¡¡£¼¯ºÏÂ۷ֻ᳡µÄÈý¸ö·Ö×鱨¸æ·Ö±ðÀ´×ÔÓ¢¹úÀû×È´óѧԬ¼Î³½µÄ¡¶How far is strong compactness from almost strong compactness¡·£¬ÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿ÔºÅíÒøºÓµÄ¡¶MA¦Ø1 does not imply K2¡·,ÒÔ¼°¶àÂ×¶à´óѧºÍ¹þ¹¤´óÊýѧÑо¿ÔºDavid SchrittesserµÄ¡¶Nonstandard methods for statistics¡·¡£µÝ¹éÂ۷ֻ᳡µÄÈý¸ö·Ö×鱨¸æ·Ö±ðÀ´×Ô¼ÓÖÝÖÝÁ¢´óѧ±±Áë·ÖУºÎÃÏÕܵġ¶Free structures and limiting density¡·£¬ÖпÆÔºÈí¼þÑо¿Ëù·½éªµÄ¡¶Integer-valued martingales and cl-reductions¡·£¬ÒÔ¼°ÐÂÎ÷À¼»ÝÁé¶Ùά¶àÀûÑÇ´óѧлÈô·ÇµÄ¡¶An Investigation of the Rademacher series with Algorithmic Randomness¡·¡£Ä£ÐÍÂ۷ֻ᳡µÄÈý¸ö·Ö×鱨¸æ·Ö±ðÀ´×ÔÖпÆÔºÊýѧÓëϵͳ¿ÆÑ§Ñо¿ÔºRizos SklinosµÄ¡¶Fields interpretable in nonabelian free groups¡·£¬¸´µ©´óѧWilliam JohnsonµÄ¡¶Around definable types in p-adically closed fields¡·£¬ÒÔ¼°¸´µ©´óѧҦÄþÔ¶µÄ¡¶On Algebraicity of definable groups over the field of p-adic numbers¡·¡£ÊýѧÕÜѧ·Ö»á³¡µÄÈý¸ö·Ö×鱨¸æ·Ö±ðÀ´×ÔÖйú¿ÆÑ§Ôº´óѧ¡¢ÖпÆÔºÕÜѧÑо¿ËùÀî´óÖùµÄ¡¶Logical approaches to the Cops and Robber game¡·£¬±±¾©´óѧ¶¡Ò»·åµÄ¡¶Examining the Fundamental Theorem of World Theory in Modal Logics with Propositional Quantifiers¡·£¬ÒÔ¼°¸´µ©´óѧÑîî£Ö®µÄ¡¶Pluralism in mathematics and universal finite set¡·¡£
¡°È«¹úÊýÀíÂß¼Äê»á¡±ÊÇÖйúÊýѧ»áÊýÀíÂ߼רҵίԱ»áÖ÷°ìµÄÄê»á£¬»áÒéÖ¼ÔÚΪÊýÀíÂß¼¼°ÆäÓ¦ÓõÄѧÕßÌṩ½»Á÷×îгɹûµÄƽ̨£¬ÒÔ¿ªÕ¹¹ã·ºÉîÈëµÄѧÊõ½»Á÷ÓëºÏ×÷£¬½ø¶ø¸üºÃµØ´Ù½øÎÒ¹úÊýÀíÂ߼ѧ¿ÆµÄ·¢Õ¹¡£
£¨ÎÄ/ͼ£ºÒüÖ¾£»ÉóºË£ºÅ˺£·å£©